

Vidcode Professional Development
Brooklyn Research, August 8th

TIME ACTIVITY

10:00-10:15
15 mins

Share: Introductions
● Share names + grade levels + experience teaching CS/coding
● What are you bringing to this training? (creativity, openness, experience)
● What do you hope to get out of it? (confidence, materials, community)
● Namecards: Write your name and the animal that represents your

teaching style

10:15-10:30
15 mins

Explain: What is Vidcode?
● Learn about the motivation for STEM equality.
● See some impressive example projects made by kids
● Code as a form of self expression
● Aesthetic and technical conversations in computational art

10:30-10:40
10 mins

Explore: A guided tour of the Vidcode tool
● How to sign in to Vidcode
● How to create new programs
● The portfolio pages
● The classroom gallery
● The teacher dashboard
● The code editor
● Sign up for a teacher account if you haven’t already

10:40-11:00
20 mins

Practice: Code Your First Vidcode
● To a computer, a video is just a large set of data. A still image (one

frame) is a list of pixel data and a video is a list of frame data.
● Follow along
● Choose a sample video to recreate, using the video filter blocks and

paying close attention to the order of the rules.
● In extra time explore the Famous Filters module

11:00-11:45
45 mins

Collaborate: Make a Meme
● Plan and code a project using “Make a Meme” about how you feel about

programming
● Share projects

11:45-12:15
30 mins

Explain: What is CS, Coding, JavaScript?
● Vocabulary
● Vidcode library vs. JavaScript
● Define: Coding, computer science, computational thinking, what do we

give students when we teach them how to code?, what level is
appropriate for my students?

● Go over:
○ Objects: containers for awesome data sets
○ Property: stuff about the object
○ Data types (strings, numbers)
○ Booleans: true or false
○ Arrays: list of things in order
○ Variable: A holder for data
○ Functions and Methods: actions (verbs)
○ Arguments
○ Loops: code that repeats

12:15-12:30
15 mins

Explain: Coding Across Subject Areas
● 3 levels of cross-curricular projects

○ 1. Content, for example replacing or augmenting a PowerPoint
○ 2. Using material, for example using a sine wave to create an

animation
○ 3. Supporting research, for example creating simulations using

data collected in a science lab

12:30-1:00
30 mins

Lunch

1:00-1:45
45 mins

Collaborate: Example of a curriculum-integrated CS activity
● Show Vidcode example: PSA: Black Lives Matter

https://app.vidcode.io/share/BYDiy6QBbf
● Mini-lesson - HoC: Climate Facts

○ Hook: https://www.youtube.com/watch?v=0aiE_hq-SXE
● Discuss the live graph of Sea Ice Extent from NSIDC:

https://nsidc.org/arcticseaicenews/
● Interpret the graph and draw conclusions about it
● Produce and code a project (Stop Motion or PSA) about a conclusion

you can draw from this graph, or how it impacts your life
● Apply what you learned about filters to make this video stand out on

social media and get your message across

● Evaluate how learning to code was different as a stand-alone subject, or
integrated into subject area

1:45-2:15
30 mins

Build: Curriculum Workshop
● Brainstorm ​a Vidcode Activity that supports your subject area
● Storyboard ​a 30 second video with a partner on a class topic of your

choice
● Use own curricular materials as a reference
● Use Vidcode lesson plans, scope & sequence
● Talk through differentiation and accommodation in the classroom & level

of JavaScript complexity for each grade level
● If time permits, code an exemplar

2:15-2:30
15 mins

Share: Curriculum Workshop
● Share curricular materials with each other
● Jot challenges on notecards, share solutions
● Discuss any anticipated challenges and create solutions together

2:30-2:45
15 mins

Share: Parking Lot Walk
● Review the questions from today!

2:45-3:00
15 mins

Debrief
● What did you learn today?
● What are you excited about?
● Homework: share one of your finished projects with a colleague
● What materials can we develop to help you get started?
● High fives for completing the day!

With extra time Explain: Assessment
● See examples of good code and bad code.
● Learn to evaluate projects based on their output.
● Learn to identify code that isn’t working.
● Discussion: Assessment – learn how to use the Vidcode assessment

tool to fit the needs of your classroom. How does grading content come
into play? How might technical assessments be reviewed in a
quantitative and qualitative way?

Debugging Guide

Directions:​ Try each step, in order, to debug your code.

1. Reread the directions ​on the current page of your tutorial

2. Reread the directions ​on previous pages

3. Make sure​ each line of code is on a new line

4. Read your code line by line ​to check your syntax. Are you missing something?

○ Does every ​open parenthesis​ have a ​matching closing parenthesis?

i. For example, ​text(“hello!” ;​ would not work because it only has an open

parenthesis, and needs a matching closing one.

ii. This is true for curly brackets { } square brackets [] and quotations “ ” as well.

○ Are you missing any ​periods or semicolons?

○ Is ​text inside quotation marks​? Any colors, like “red”, or messages that you want your

text to display, like ​“hello everyone!”​, should be inside quotation marks.

i. For example text(​"hello everyone!"​); or

ii. tint(​"green"​, 50);

5. Find out what code is working and what isn’t​ by isolating your code through commenting

○ Comments are lines of text that the computer doesn’t read

i. /* ​comment out a section of code​ ​*/

ii. //​ ​comment out a line of code

6. Ask your partner

○ Partner reads code for errors

○ Partner points out errors

7. Ask a neighbor

○ Team member reads code for errors

○ Team member gives hints, but doesn’t tell!

8. Ask your librarian

○ Librarian reads code for errors, or checks the answer in lesson plans

○ Librarian gives hints, but doesn’t tell!

9. Copy your code, refresh the page, and paste​ it in the editor

10. Save your code and start over​. You’ve got this. :)

JavaScript Cheat Sheet

var item = "anything!"; Think of variables like food storage containers!
You can check what’s in these containers, replace
them, or put something else in them entirely!
When you set ​my_text = text(“hi!”);
my_text​ is a ​variable​ holding ​hi!

var colors = ["blue", "red", "green",

"pink"];

An ​array​ holds data in an ordered list.
To get blue out of my array, I would type
color[0];​ because ​arrays​ start counting from 0!

colors.length; Get the ​length​ of my array. ​colors.length;
would return ​4.

repeat(function(){

 //code that repeats

}, 10);

Code that gets run over and over again. Using
repeat, you can increase or decrease variables to
create ​animations​, ​special effects​, and more!

var functionName = function(){

 //your code goes here

}

A ​function​ holds an ​action​ that your code can
run.
For example, the code below moves ​any​ graphic,
text or drawing across the screen:
var moveAcrossStage =

function(this_graphic){

 this_graphic.x = this_graphic.x + 75;

}

This way, I only ever have to write this code once!

if(movie.currentTime > 1){

 //things happen

}else{

 //other things happen

}

If-else statements​ are a way to give instructions
to your computer!
If ​you see the building with the red door, ​then​ turn
left, ​else​ keep going!
If​ my video is halfway done,​ then​ make my
graphic disappear.
Put ​if-else​ statements ​inside ​repeat.

Video Storyboard

BEGINNING
1. Notes: ___________________________________ 2. Notes: ____________________________________

MIDDLE
3. Notes: ___________________________________ 4. Notes: ____________________________________

END
5. Notes:___________________________________ 6. Notes:____________________________________

Project Assessment Rubric

 Unsatisfactory Competent Proficient Distinguished

Project
Content

Project does not
convey the required
information or
understanding.

Project shows
some
understanding of
the subject.

Project reflects
understanding of
the subject.

Project reflects
understanding and
synthesis of the
subject.

Code
Execution

Program does not
work, or has major
flaws that prevent its
intended use.

Program mostly
works, and has only
minor flaws.

Program works in
the way the student
intended.

Program is
functional and
refined, with extra
features that
exceed the
requirements.

Code
Practice

Program is difficult
to read. Code
contains lines that
do not work or are
out of order.

Program can be
read and is in a
logical order.

Program is
well-organized,
easy to read and
understand.

Program is
well-organized,
makes good use of
whitespace and
comments.
Variables have
helpful names.

Reflection

Student cannot
describe how their
code works.

Student can mostly
describe how their
code works.

Student can
describe how their
code works and can
make changes that
have desired
effects.

Student can
describe how their
code works and
how they wrote it,
and help others
debug their code.

Habits of
mind

Student is not aware
of the goal of the
program, is
frequently off- task,
does not offer their
own ideas, and gives
up when it is difficult.

Student is aware of
the goal of the
program, returns to
the task when
asked, has some
ideas when
prompted, asks for
help when stuck.

Student
understands the
goal of the
program, has their
own ideas, rarely
goes off-task, and
attempts to solve
problems first
before asking for
help.

Student embraces
the goal of the
program and
chooses to try out
new ideas and
multiple solutions,
even when they are
challenging.

6th Grade Ancient Civ Vocabulary

Big Idea: ​Planning and execution make the difference between a memorable meme and a
forgettable one.

Module: ​Make a Meme ​https://app.vidcode.io/project/graphics

Time: 60 minutes
 10 minutes background
 20 minutes video production
 20 minutes coding
 10 minutes sharing

Standards
CCSS.ELA-LITERACY.RH.6-8.4
Determine the meaning of words and phrases as they are used in a text, including vocabulary
specific to domains related to history/social studies.
CCSS.ELA-LITERACY.RH.6-8.7
Integrate visual information (e.g., in charts, graphs, photographs, videos, or maps) with other
information in print and digital texts.
CCSS.MATH.PRACTICE.MP6 Attend to precision.
CCSS.MATH.PRACTICE.MP7 Look for and make use of structure. CCSS.MATH.PRACTICE.MP8
Look for and express regularity in repeated reasoning.
NGSS Engineering Practice 8 Obtaining, evaluating, and communicating information
Background (10 mins)
A meme is a tiny idea that people like and share because it is funny, weird, or gross.

Ever think about where the word “meme” comes from? It’s related to “memory.” Memes are
things that are easy to remember! And what kinds of things do you work hard to remember?
Vocab words! In this lesson, we’ll make our vocabulary words easy to remember by turning them
into memes.

Watch this video as inspiration: ​https://www.flocabulary.com/ancient-egypt/

https://app.vidcode.io/project/graphics
http://www.corestandards.org/ELA-Literacy/RH/6-8/4/
http://www.corestandards.org/ELA-Literacy/RH/6-8/7/
https://www.flocabulary.com/ancient-egypt/

Video Challenge (20 mins)
In teams, choose a vocabulary word and shoot a short video about it.

Irrigation Polytheism Empire Ziggurat Levee City-State
Use the Flocabulary video as inspiration. You don’t have to be too literal. Be interesting!

Sample ideas:

Shoot a page in your social studies book.
Make some simple paper puppets and move them around with your hands.
Act out the word in character.
Film yourself writing or typing the definition.
Charades!

Code Challenge (20 mins)
Add text and effects to your video to make it really memorable. Animate a special effect that
goes with the word. Add some cool music. Make sure you’ve conveyed the word and what it
means!

Code reference: ​https://app.vidcode.io/reference

text('I love coding!', 60, 55); ​Creates text on your video at position (x,y).

text.color = "green"; ​Changes the color of your text.

text.size = "50px"; ​Changes the size of your text.

text.font = "Times"; ​Changes the font of your text. Possible fonts: "Arial", "Comic Sans MS",
"cursive", "serif", "monospace"

audio("rock"); ​Plays music over your video. You can change it to "dance", "electronic", "funk",
"rock", or "retro"!

Sharing (10 mins)
Publish the finished memes, and show them one-by-one on the class projector. Have a face-off:
which team did each word better? Vote on the most memorable meme. Turn the videos off and
have a pop quiz!

https://app.vidcode.io/reference

Hour of Code: Climate Facts
The goal of this Hour of Code lesson is for students to research and understand a fact about the
Earth's climate, engaging with the work of scientists and artists in response to climate change.

Students should take their research, and plan a 30-second video sharing a fact that they learned.
They can use props, art they made, their environment and other actors in their videos.

Big Idea: ​Coding levels up your presentation skills.

Module: ​Climate Science & Code ​https://app.vidcode.io/project/hourofcode-science

Time: 60 minutes
 25 minutes video production
 25 minutes coding
 10 minutes reflection

Video Challenge (25 mins)
Before your students start filming, they should plan out what they’re going to be creating.
Choose a topic: what fact about climate do they want to share?

Have students create a storyboard or write a short script, and use it as their guide. Or, if they
want to adlib, have them write a short summary of their fact or topic.

Think about the story: what will your filming environment look like? How many people will you
film? What props will you use?

How will you incorporate effects and graphics into your video during editing?

You can choose to record the actual video through the Vidcode interface, or from a program
installed on your students’ computers, such as PhotoBooth.

Go the the Project Page ​https://app.vidcode.io/project/hourofcode-science​. Students can
record their videos directly onto the interface or click the background to exit record, and upload
their video with the button on the right.

https://app.vidcode.io/project/hourofcode-science
https://app.vidcode.io/project/hourofcode-science

Code Challenge (25 mins)
Once they’re happy with their videos, it’s time to start coding! They should follow the steps on
the left of the screen to go learn how to edit their videos with code.

This can be done individually, or in pairs.

Use the docs or Reference page for more information on how to edit videos with JavaScript.
https://app.vidcode.io/reference

Reflection (10 mins)
After publishing their videos, students can click 'View your Video here' and share the url of the
video with their classmates.

Students should talk about what they learned about climate change, and how they used art and
code to create their video.

What did they learn? What is JavaScript? What is creative coding? How can they use these
things in the future?

https://app.vidcode.io/reference

Programming for Teachers
A letter of encouragement from someone who’s been there before.

Hello. It’s nice to meet you. I’m really glad you’re trying out Computer Science. The prospect
may scare you, and that’s ok. That’s why Vidcode has dedicated years to making coding as
engaging and accessible as possible to all learners. And it’s also why I’m here with some advice
for teachers.

Start with a growth mindset.
In the immortal words of April Murillo, aged 11, “Coding isn’t hard, it’s just a lot.”

And if April can do it, so can you. You’ve already taken the most important step: you’re trying.
If your students can see you learning something new at your age, they will grow into lifelong
learners themselves.

Read the directions.
Practice what you preach, Teach! Read the whole step before changing your code. Read it
again. Make sure you understand it. The things you actually have to *do* are in purple. Make
sure you’ve done it properly and checked your work before moving on to the next step!

Mistakes show you’re trying.
Take your code one line at a time. Test it. Make sure it does exactly what you want it to do. As
soon as something breaks, stop. Ask for help. Show your class your mistake. Get them to solve
it. Celebrate when you’ve squashed that bug. Debugging is a legitimate use of learning time.
Remember, we care more about the process than the product. Or to quote Miley Cyrus, “Ain’t
about how fast I get there. Ain’t about what’s waiting on the other side. It’s the climb.”

Anyone can be an expert.
Even kids. Kids have the luxury of time. They’ve probably messed around with stuff like this way
more than you have, which means they made more mistakes, and therefore they have more
experience. Learn from them. Let them help you. They will be proud of themselves. They may
even work harder so they can show you up again in the future.

Stay on-task.
At some point, all students will have to try out all the different videos, filters, and graphics. They
will even legitimately have to search for images on the internet or choose emojis. But draw the
line. “You have two minutes to choose, or else you have to use the dog.” A good rule of thumb
(or heuristic) is that as you make your rounds, you shouldn’t see them off Vidcode twice in a
row. You can always check the step number at the top of their screen to see if they’re falling
behind the rest.

Go back.
Program not working? Don’t know why? Start over! There’s no shame in starting from the
beginning. There’s even an old programmer adage that it’s good luck to accidentally delete your
code. You won’t have to make the same mistakes again, and it will end up better.

Copy your code.
Let’s say you look at a problem and think, “I’ve solved this before.” Don’t waste your time
solving it again! Go back to your old project and make a copy! There is sufficient value in
identifying and adapting reusable code that it’s inefficient to keep typing everything from scratch.

We’re stronger together.
At some point, a student will call you over for help. You will stare at the screen. It’s not working,
but you have no idea why. You try everything you can think of, but nothing helps. You start to
panic.

What are you, some kind of superhero? Give yourself a break! I have a PhD in CS and this
happens to me every day. Call another kid over and have them work on it together. Project it up
on the screen and have the class shout out possible solutions. Worst case scenario, just delete
stuff until it works. It’s probably something dumb and impossible to see, like they used double
quotes on one side and two single quotes on the other. And if they have to start over, remind
them of Miley Cyrus.

You’ve got this.
You really do. I have faith in you.

Happy coding!
Dr. Em

